
Thinker™
Functional Description

Version 1.0

© 2010-2022 Nikolai Varankine



2

Introduction
The Thinker™ is a math simulator instrument to perform visual examination of
numerous computational processes running concurrently.

A math model is described as a hierarchy of math modules. Each function or group of
functions inside a module can evaluate the result in its own computing thread. Modules
exchange computed values in asynchronous manner. Each math value can be visualized
at runtime as either a plain number or floating timeline graph.

Math Model Definition

Math model (a synonym of project in the simulator)
has external representation in XML format. Inside the

simulator, every loaded XML file is represented as a separate
package comprising one or more models.

Each model contains a set of parameterized
computing blocks (a synonym of fragment in the

simulator), data interconnections between fragments and
processor definitions. A model can include a library of
components that can be reused across the project. An example
of a project, named “summer”, is shown on the picture to the
right.

A network connection (a synonym of signal in the
simulator) is simply a label, or a tag, that serves as a

reference to a common sort of virtual media to propagate
numeric values.

A fragment contains a set of so-called “pins”, or gates, for numeric values to
flow in or out of the fragment. Each pin references one signal. This way many

pins, having the same reference, are grouped together to form a separate network. A pin
also declares a direction of data flow through it. In other words, a direction defines
whether a particular pin is either a source or consumer of data floating through the pin.

An arbitrary textual note can be added at any point of the package hierarchy,

© 2010-2022 Nikolai Varankine



3

to add comments to the data or for any other purpose. A note has a classification mark
that helps to categorize messages.

Also every node in the hierarchy can have supplementary information defined
by a third-party. One sort of them, a standard of Scalable Vector Graphics
(SVG for short), is supported directly by the Thinker. Many element types of
SVG can be used to form an image of select nodes, including animations and

HTTP hyperlinks. Combined together, they form a complete picture, for any node of the
model hierarchy. An example for the “summer” model image is shown at the end of this
paragraph.

A library can be treated as a local storage of component patterns (a
synonym of module in the simulator). These patterns have no direct

connections in between, they get connected when they are instantiated in a model via
fragments. A pattern can be referenced by the fragment, provided with a processor to

use and a set of so-called “external” pins, as was said above. An
example of a computing module, named “summator-2” and
stored in the library, is shown on the picture to the left.

There are few types of patterns. Most important
is a computing module (on the right). It contains
a special sort of hierarchy seen as a tree. Each node there
evaluates a math function (“dot in circle” on the
right). Arguments of these functions are taken either
from enclosed nodes or external pins declared as
data consumers. Top level node provides a computed value to a
pin declared as a source of data. A particular
formula of math function is declared in a form of
Java class code (“Java cup logo” on the right), implementing a
special interface. This way any complex math function can be
computed.

A module having many input and output pins can be seen as a
math operator over the matrix.

Another type of module is a so-called field. Simply put, it is a
one-to-one interlink for connections, to perform elementary

© 2010-2022 Nikolai Varankine

https://www.w3.org/Graphics/SVG/


4

transitional operations over the data.

Modules can include other modules instantiated through their internal fragments,
provided that embedded modules don’t create a module reference loop. This way
complex regular computing structures can be defined in a very compact form.

Each fragment, referencing the same module name, receives its own copy of a module,
so all modules of the same type appear distinct to the model and so don’t share the
same computed data unless they are connected at fragment level.

As was said above, both fragments and modules have one or more sets of pins,
named as joints for short (picture on the left).

Every module, like a fragment, defines a set of pins (picture on the left) within a
joint, called differently for the module as “internal” pins. These pins participate in

connections declared within a module.

When a fragment instantiates a module, both “external”
and “internal” joints get connected by means of
enclosed pins. This feature allows data to flow in and
out of the module. An example of internal pins is shown
on the left. Another matched example for external pins -
on the right.

A module can have more than one joint for the same set of
connected signals. It is possible because a connection is rather a
tag than a real “pipe” with data. Unconnected joins don’t participate
in runtime computation. All the border data flow performs through

pin-to-pin declaration at fragment level. At a module level, every pin features a direction
for data to flow across the border.

A main purpose to have more than one duplicate joint
is a possibility to present a different visual
representation of the module through the fragment.
One method is to show the full contents of the module.
Another variant is to display just a picture enclosed
into a selected joint - the so-called “symbol” of the
module (used on the picture to the right). There is a

© 2010-2022 Nikolai Varankine



5

third variant too, having no graphics at all, but just a text string enlisting pins of the
module. In a special case, no information will be shown at all. Last three variants
effectively hide the contents of a module when a concise representation is needed.
Selection of a participating joint is performed by name or through an “assembly”
parameter.

Math model build-up and computation

Described definition of a math model uses a hierarchy approach to benefit low efforts to
express what and how should be computed. In contrary to regular software, such a
definition cannot be used directly during computing time, because there is no hardware
to support these data structures directly. Very similar to integrated circuits production,
this form of hierarchy description must be flattened.

The process of conversion is performed automatically and
doesn’t require assistance from the researcher. All needed
parameters and modes are already included in the math
model. After the model is built, it appears in another browser
(see picture on the right). It looks very similar to the original
hierarchy and even keeps all labels, but at the background it
is really flat. The runtime model is composed of a very
limited number of element types. They are: processor,
transmitter, receiver and math function. Other elements,
despite the different picture in the tree, are simply virtual
containers, used for the purpose of easy navigation through
the model.

A transmitter (red, on the left) includes a set of
receivers. Once a signal (data value) arrives at the

transmitter, it is being replicated to every receiver. A receiver
(green, on the left), in turn, performs some elementary
checks over the incoming data. Then, under the test result, it may schedule a

computation request for the function.

This request arrives into the queue of the assigned processor. This processor (on
the left) isn’t a real CPU core but a separate computing Java thread running

concurrently with other such threads. Once ready for the next request, a processor

© 2010-2022 Nikolai Varankine



6

applies selected modes of computation to the queue. They can be divided into two
groups: performance modes and accuracy modes.

A request at the front end of the queue triggers computation of the math function
(on the left) at the assigned node. Once computed, this result flows either to the

upper level computing node or to the transmitter, when the node is the top level node.
This way a model computation process continues in the infinite dynamic sequence.

Some elements of the computing media can have data flow controls. They are:
processors, computing blocks, models and the whole media. Their current
state is indicated by the background of the icon in the browser. Controls allow
to start, stop and pause computation for each such element individually. Of
course, top level controls override settings of embedded controls.

There are no limits on how many times a single model is built and run simultaneously.
Each converted model appears as a separate tree in the browser. Unused models can
be simply deleted to free resources to the application. While a model runs, a researcher
has an opportunity to continue other work with the application.

Visual representation of computation results

Generator of the model creates every node observable in a graph timeline tool. Any
computing node or transmitter/receiver node can be applied to a graph by simple drag
and drop operation. Displayed objects can be assigned presentation and conversion
features. The graph itself also has separate presentation settings and value range
settings for each axis. For the timeline axis, built-in control allows researchers to make a
snapshot. An example of the “summer” model at runtime is shown below.

This is a dynamic flow graph. The simulator refreshes the graph after every specified
interval. Values in millisecond range appear normal even for large screens having 4K
resolution. Setting a small interval value creates a smooth motion picture. A big interval
value may create flickerings but saves CPU/GPU resources and helps in total
performance.

A moment of “now” is shown on the right side of the timeline axis and is labeled as “0”.
All ticks to the left of it represent a state in the past, so they display labels as negative
time offset.

© 2010-2022 Nikolai Varankine



7

A time flow can be stopped, to show a snapshot. For this case, timeline ticks display
labels in current local time. A paused example of the same “summer” model is shown
below.

A pause feature is available for individual graphs too. Also, every observed value can be
turned on and off, or simply deleted. For running values, it is possible to change

© 2010-2022 Nikolai Varankine



8

representation at every moment.

When a display of the value is paused, the model continues to compute it. To stop
computing, a dedicated node, which has flow control features, should be used instead.
When stopped, the graph will show no markings for this value on all graphs.

There are use cases when a graph is not needed. Researchers can have a look at node
properties instead. This form of representation allows researchers to read an accurate
digital value of the signal. When needed, a snapshot can be made as well. An example
for a top level computing node is shown below.

Possible applications

This simulator is a convenient and easy tool to research, develop and debug complex
processes described as math functions, where it appears very difficult to obtain an
exact analytical formula for every part of a project. The Thinker allows researchers to
define a compact math model for the entire project and simulate exact behavior instead,
having a possibility to probe every model point.

As model data structure has a strong link to approaches used in integrated circuits
design, it can be applied to simulation of complex digital and analog circuits having not
trivial feedback loops. Final results can be mapped to a “silicon” design project with
minimum efforts.

The Thinker has been successfully used in proprietary artificial general intelligence
(AGI) research since around 2010.

© 2010-2022 Nikolai Varankine



9

Contacts for sale quotes and technical information inquiries

Scand Ltd.
Web: https://scand.com/
E-mail: info@scand.com
US: +1 (773) 831-4876
Poland: +48 (22) 219-98-19
Germany: +49 (212) 8807-9797
Belarus: +375 (44) 774-47-79

© 2010-2022 Nikolai Varankine

https://scand.com/
mailto:info@scand.com

